科研人员开发相分离关键氨基酸鉴定算法PSPHunter |
来源:中山大学 2024-04-24 14:14
该研究报道了一种基于多信息融合的机器学习模型PSPHunter,可用于鉴定相分离蛋白和相分离关键氨基酸。中山大学丁俊军课题组在Nature communications发表了题为Precise prediction of phase-separation key residues by machine learning的研究成果。该研究建立了一种机器学习算法PSPHunter(Phase-Separating Protein Hunter),通过整合相分离蛋白的序列和功能特征来预测相分离蛋白并识别关键氨基酸,进一步量化疾病相关突变对相分离的影响,剖析相分离与疾病之间的关系。
在该项研究中,研究人员首先整合现有的相分离蛋白数据以及相分离相关序列和功能特征,建立了机器学习算法PSPHunter,基于算法评分筛选出由898个相分离蛋白构成的相分离蛋白组PSProteome。进而,运用滑动窗口(Sliding-window)策略针对蛋白质序列进行连续截断,定义截断后使相分离能力下降最多的片段为关键氨基酸(Key residues)。通过现有研究与实验两种途径验证了算法可靠性之后,进一步解析了相分离关键氨基酸的内在特征,并评估了突变对于相分离的影响,对于相分离和致病突变之间的关系进行了全面解析。
综上所述,该研究报道了一种基于多信息融合的机器学习模型PSPHunter,可用于鉴定相分离蛋白和相分离关键氨基酸。利用该算法建立相分离蛋白质组、相分离关键氨基酸图谱和相分离致病突变图谱等资源,有助于阐明相分离蛋白的功能,探索相分离在转录调控、细胞命运转变和疾病发展中的机制。
版权声明 本网站所有注明“来源:100医药网”或“来源:bioon”的文字、图片和音视频资料,版权均属于100医药网网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:100医药网”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。 87%用户都在用100医药网APP 随时阅读、评论、分享交流 请扫描二维码下载-> 医药网新闻- 相关报道
-
- 《自然》子刊:怀孕对大脑的影响,实在是太大了!科学家首次全程记录孕期大脑变化,发现大脑皮层变薄、灰质/海马萎缩 (2024-09-20)
- 给T细胞‘加加油’!Cell:基于线粒体转移技术增强T细胞中的线粒体活性,可增加抗肿瘤免疫力 (2024-09-20)
- 《癌症通讯》:又现一员促癌大将!复旦中山医院团队揭示调控乳酸代谢,帮癌细胞教唆巨噬细胞促癌的重要靶点 (2024-09-19)
- Nature:科学家成功结合人工智能技术和连接组的潜能来预测大脑细胞的活性 (2024-09-19)
- Nat Immunol:效应T细胞衰减与慢性乙肝控制相关 (2024-09-19)
- NCB:实体肿瘤诱发两类系统性B细胞异常:揭示免疫治疗新挑战 (2024-09-19)
- 研究发现与大脑认知功能相关的人脑特异细胞群 (2024-09-19)
- Cell:不只是燃烧产热,王丹丹等发现棕色脂肪还发挥保护血糖代谢的作用 (2024-09-19)
- 神药“二甲双胍”究竟几分真假?多项研究表明:二甲双胍能够降血糖、抗衰老,但也会诱发诸多副作用,例如肝中毒、乳酸中毒 (2024-09-19)
- Nature:浙江大学王迪/池哲勖团队揭示利用炎症促进损伤或衰老组织修复的新机制 (2024-09-18)
- 视频新闻
-
- 图片新闻
-
医药网免责声明:
- 本公司对医药网上刊登之所有信息不声明或保证其内容之正确性或可靠性;您于此接受并承认信赖任何信息所生之风险应自行承担。本公司,有权但无此义务,改善或更正所刊登信息任何部分之错误或疏失。
- 凡本网注明"来源:XXX(非医药网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。本网转载其他媒体之稿件,意在为公众提供免费服务。如稿件版权单位或个人不想在本网发布,可与本网联系,本网视情况可立即将其撤除。联系QQ:896150040