您的位置:医药网首页 > 医药资讯 > 医药行业分析 > bioRxiv:利用机器学习发现新型冠状病毒的潜在中和抗体

bioRxiv:利用机器学习发现新型冠状病毒的潜在中和抗体

2020年4月14日讯 /BIOON /——病毒是一种狡猾的小病原体,在我们的免疫系统知道如何摧毁它们之前,就能对人体造成严重破坏。有了机器学习工具,我们就可以通过加速抗体的形成来战胜它们。

在卡耐基梅隆大学机械工程系的实验室里,Amir Barati Farimani开发了能够基于数据推断、学习和预测机械系统的算法。他研究了一系列的课题,从流体力学和传热到材料发现和机器人技术,他还研究了人类健康和生物工程的挑战。Barati Farimani是卡耐基梅隆大学机械工程助理教授,他在那里指导机械和人工智能实验室。

图片来源:bioRxiv

随着COVID-19大流行的爆发,Barati Farimani很快将他的实验室的重点转移到SARS-CoV-2研究上。此前,他曾使用机器学习工具来研究埃博拉病毒和艾滋病病毒的抗体,现在他想进一步研究这种新型冠状病毒。

目前,科学家们使用基于计算和物理的模型来筛选成千上万的抗体序列。这些模型既昂贵又耗时,还需要我们尚未掌握的关于SARS-CoV-2的信息。

"这就是机器学习可以完成繁重任务的地方,"Barati Farimani说。"它不仅能比目前的筛选方法更快地"学习"复杂的抗原-抗体相互作用,还能在反应时间上超过人类的免疫系统。"

研究小组将现有的其他传染性病毒的生物数据整合到他们命名为VirusNet的数据集中。然后,他们用这组数据来训练机器学习模型,选择性能最好的模型来筛选成千上万的潜在抗体候选。

该模型最终鉴定出8种稳定的抗体,它们在中和SARS-CoV-2方面非常有效。这些发现被发布在生物学预印本服务器bioRxiv的初步报告中,以便其他研究人员能够尽快获得这些信息。

"我们的目标是拯救生命,"Barati Farimani说。"现在分享我们的初步发现,将有助于世界各地的其他科学家抗击这种病毒的工作。我们有着共同的目标。"(100医药网100yiyao.com)

参考资料:

【1】

【2】Rishikesh Magar et al. , bioRxiv. (2020). DOI: 10.1101/2020.03.14.992156

医药网新闻
返回顶部】【打印】【关闭
扫描100医药网微信二维码
视频新闻
图片新闻
医药网免责声明:
  • 本公司对医药网上刊登之所有信息不声明或保证其内容之正确性或可靠性;您于此接受并承认信赖任何信息所生之风险应自行承担。本公司,有权但无此义务,改善或更正所刊登信息任何部分之错误或疏失。
  • 凡本网注明"来源:XXX(非医药网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。本网转载其他媒体之稿件,意在为公众提供免费服务。如稿件版权单位或个人不想在本网发布,可与本网联系,本网视情况可立即将其撤除。联系QQ:896150040