研究人员阐明靶向离子通道蛋白TRPV1临床药物分子的结构药理学基础 |
![]() |
来源:网络 2024-09-08 11:06
SAF312是一种高效、选择性的TRPV1小分子拮抗剂,目前诺华制药公司正在临床二期试验中评价该候选药物在术后眼部疼痛的治疗中的效果,且达到了临床预期,有望成为最新一代靶向TRPV1。TRPV1(Transient Receptor Potential Vanilloid 1)是一种非选择性阳离子通道,属于瞬时受体电位(TRP)离子通道家族的香草素亚家族。TRPV1最初是作为辣椒素(capsaicin)受体被发现的,因此也被称为辣椒素受体或香草素受体1,其发现者David Julius教授凭借在发现感知温度受体上的突出贡献,获得了2021年诺贝尔生理学或医学奖。
TRPV1可以被高温( 43 C)低pH( 5.9)等理化刺激,以及内源性脂分子和外源性配体激活,参与疼痛感知,温度调节,炎症反应等多种生理和病理过程。药理学和遗传学研究已证实TRPV1是多种慢性疼痛的临床前模型的治疗靶点。由于能作用于疼痛传导通路上,针对TRPV1研发药物,可有效避免药物成瘾和大量副作用,目前已有一系列新型的针对TRPV1的拮抗剂、激动剂陆续被报道,将有潜力改变临床上只能使用阿片类药物止痛的局面,对于未来开发新一代麻醉镇痛药物还将有可持续的重大价值。
目前批准上市的针对TRPV1药物只有辣椒素的外用制剂 Qutenza(capsaicin,辣椒素)8%贴片,用于成人患者治疗足部与周围(DPN)相关的神经性疼痛及治疗带状后遗神经痛引起的神经病理性疼痛。然而,目前针对TRPV1的拮抗剂的结构研究报道较少,所以针对TRPV1的拮抗剂作用机制的研究将有效助力药物研发。
论文截图
SAF312是一种高效、选择性的TRPV1小分子拮抗剂;目前诺华制药公司正在临床二期试验中评价该候选药物在术后眼部疼痛的治疗中的效果,且达到了临床预期,有望成为最新一代靶向TRPV1,用于治疗术后疼痛的 first-in-class 小分子药物。然而,SAF312抑制TRPV1的机制仍不完全清楚。北京大学化学与分子工程学院雷晓光教授团队近些年致力于靶向离子通道蛋白和疼痛治疗的药物化学生物学研究。
为了深入理解SAF312的结构药理学基础,帮助开发更为有效的止痛药物,该团队解析了人源TRPV1与SAF312的复合物冷冻电子显微镜结构,阐明了其对TRPV1拮抗效应的结构基础。SAF312结合于香草素结合口袋,阻止了对通道门孔至关重要的S4和S5螺旋的构象变化。出乎意料的是,团队还发现内源的参与了SAF312的抑制作用。研究团队通过结合点突变验证、钙成像、电生理和分子动力学模拟等,揭示了SAF312抑制TRPV1的重要机制,并阐释了拮抗剂SAF312与胆固醇在调控TRPV1功能中的协同作用。该工作不仅扩展了对SAF312抑制TRPV1的机制理解,也为进一步开发和优化与TRPV1相关的药物研发提供了指导。
TRPV1小分子拮抗剂SAF312的结构药理学基础
该工作是雷晓光团队继前期发表的TRPV家族离子通道蛋白TRPV3(Nature Chemical Biology2023, 19, 81 90),TRPV4(Advanced Science2024, 11 , e2401583)后,在靶向离子通道蛋白的结构药理学和药物化学生物学方向上做出的又一重要科研成果。该工作近日以 为题发表于国际期刊Nature Communications。
雷晓光及该团队中副研究员范俊萍博士作为论文的共同通讯作者,主要负责该研究工作。范俊萍、雷晓光团队中博士研究生柯瀚及日本国立生理科学研究所的雷晶博士为该文共同第一作者。雷晓光课题组博士后王进,以及日本国立生理科学研究所的富勇真琴(Makoto Tominaga)教授为该研究作出了重要贡献。该研究得到了国家重点研发计划、国家、北京分子科学国家研究中心、北大-清华生命科学联合研究中心、新基石基金会等项目和单位的资助,相关的分子动力学模拟在北京大学高性能计算平台上完成。中科院生物物理所冷冻电镜平台对该研究提供了冷冻电镜支持。
版权声明 本网站所有注明“来源:100医药网”或“来源:bioon”的文字、图片和音视频资料,版权均属于100医药网网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:100医药网”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。 87%用户都在用100医药网APP 随时阅读、评论、分享交流 请扫描二维码下载->

- 相关报道
-
- Cell:震惊!首次发现肠道微生物释放抗癌胆汁酸,阻断雄激素信号传导,从而增强T细胞的癌症杀伤能力 (2025-04-19)
- 大脑成微塑料“垃圾场”?Nature子刊:痴呆患者脑内微塑料浓度显著高于健康人,8年飙升50%! (2025-04-19)
- “无糖”饮料居然会越喝越饿?最新Nature子刊:人工甜味剂三氯蔗糖会增加大脑饥饿调节中心的活动,刺激食欲,特别是对女性/肥胖者 (2025-04-19)
- 《自然》双重磅:重大突破!两项早期干细胞治疗帕金森病临床试验结果发表,治疗安全性高,并显示出运动功能和疾病严重程度改善 (2025-04-19)
- Cell:科学家揭秘先天基因密码如何影响癌症发展?有望开启精准医疗新时代 (2025-04-18)
- 氰化物的逆袭!Nat Metab:科学家揭秘氰化物从致命毒药到细胞信使的惊人转变 (2025-04-18)
- BMJ:死亡风险降低62%!中山大学团队首次证实,4个周期新辅助化疗联合同步放化疗可将鼻咽癌患者5年生存率提至90%以上 (2025-04-18)
- Cell重磅:肠道菌群竟能通过产生的胆汁酸增强抗肿瘤免疫!一作已回国加入厦门大学 (2025-04-18)
- CD:科学家发现抑癌蛋白p53缺失诱发癌细胞免疫逃逸的新机制! (2025-04-18)
- 改写生命密码!iScience:工程病毒样颗粒在类器官中“出手”,成功将囊性纤维化关键突变G542X转为G542R (2025-04-17)
- 视频新闻
-
- 图片新闻
-
医药网免责声明:
- 本公司对医药网上刊登之所有信息不声明或保证其内容之正确性或可靠性;您于此接受并承认信赖任何信息所生之风险应自行承担。本公司,有权但无此义务,改善或更正所刊登信息任何部分之错误或疏失。
- 凡本网注明"来源:XXX(非医药网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。本网转载其他媒体之稿件,意在为公众提供免费服务。如稿件版权单位或个人不想在本网发布,可与本网联系,本网视情况可立即将其撤除。联系QQ:896150040