Nature Methods:肿瘤进化的空间图谱,CalicoST算法揭示癌症克隆的基因组与空间演化 |
在肿瘤研究中,了解肿瘤的空间演化过程和其基因组异质性是揭示肿瘤生长、转移及抗药性的重要环节。随着基因组学、转录组学以及空间技术的不断发展,研究人员逐渐能够从不同角度对肿瘤的演化轨迹进行详细分析。然而,传统的基因组分析往往忽视了肿瘤细胞在空间上的分布异质性。为了解决这一问题,CalicoST算法的诞生为肿瘤演化研究提供了强大的工具,它能够结合空间转录组学(Spatially Resolved Transcriptomics, SRT)数据,从肿瘤的基因组变化和空间分布中推断出肿瘤克隆的演化历程,并揭示其在物理空间中的扩展路径。
空间转录组学:为肿瘤进化提供新的视角
肿瘤细胞的进化不仅体现在基因突变上,还在于它们如何在不同的空间区域内扩展、演化及互动。肿瘤细胞群体通过获得不同的基因组改变,形成多个肿瘤克隆,这些克隆在空间上的分布和相互作用直接影响着肿瘤的生长模式及治疗响应。
空间转录组学(SRT)技术通过在组织切片中标定空间位置的同时,测量大规模基因表达信息,为我们提供了肿瘤空间异质性的详细图谱。尽管这种技术为我们提供了关于肿瘤细胞类型及其功能状态的重要数据,但它本身并不直接提供基因组突变的信息,尤其是拷贝数变异(Copy Number Alterations, CNAs)等重要的基因组变化。因此,如何从转录组数据中推断出肿瘤的拷贝数变异并重建肿瘤的空间演化历史,是一个长期以来亟待解决的难题。
CalicoST算法通过结合空间转录组学数据与基因型数据,成功地推断出肿瘤细胞中的等位基因特异性拷贝数变异,并构建肿瘤的空间进化地理图(phylogeography)。这一算法不仅能够克服传统方法中的不足,还为肿瘤的空间异质性、演化路径和转移机制提供了新的解析框架。
CalicoST
1. 输入数据
CalicoST 需要几种类型的输入数据:
空间坐标矩阵 (S):表示样本的空间排列。
转录本计数矩阵 (X0):包含每个空间位置上每个转录本的总读数。
等位基因计数矩阵 (Y0):记录来自于生殖系杂合 SNP 的非参考等位基因的读数。
总等位基因计数矩阵 (D0):包括来自于参考和非参考等位基因的总读数。这些矩阵通常通过标准的 SRT 分析管道得出,其中 Y0 和 D0 是通过专门的管道计算得出的,针对已知 SNP 位点进行等位基因计数。
2. 初步相位
初步步骤包括使用参考单倍型数据库通过基于人群的算法(如 Eagle2)对 SNP 进行相位。这种相位通常对邻近 SNP 可靠,但在远离 SNP 的情况下可能存在错误。
3. 错误校正
CalicoST 通过计算所有点的 B 等位基因频率(BAF)来纠正潜在的相位错误,从而有效地创建伪混合样本。这有助于通过聚合来自多个空间位置的数据来提高等位基因计数的准确性。
4. 隐马尔可夫模型
CalicoST 的核心采用生成概率模型,包括:
一个隐马尔可夫模型 (HMM),用于建模相邻基因组位点之间拷贝数的相关性。
一个隐马尔可夫随机场 (HMRF),用于考虑相邻点之间克隆标签的相关性,假设附近点之间存在遗传相似性。
5. 拷贝数状态推断
CalicoST 识别转录区域的等位基因特异性整数拷贝数,揭示复杂事件,如拷贝中性杂合性丧失(CNLOH)和镜像亚克隆 CNA,这些事件在总拷贝数分析中可能无法检测到。它将基因组区间聚类为不同的拷贝数状态,同时推断癌症克隆。
6. 系统发育地理重建
该算法通过根据 LOH 事件推断系统发育树来重建肿瘤的系统发育地理,利用这些不可逆标记划分癌症克隆之间的进化关系。这个过程将基因组和空间演化整合为一个统一模型,使得对肿瘤动态随时间和空间的发展有更全面的理解。
主要特点
CalicoST 提供了几个显著功能:
识别等位基因特异性 CNA:能够检测传统方法可能忽略的特定 CNA。
克隆标记:每个空间点被分配一个反映其等位基因特异性拷贝数轮廓的克隆标签。
同时分析:能够分析来自同一肿瘤的多个区域或对齐 SRT 切片,从而增强对空间肿瘤演化见解的分辨率。
CalicoST算法的创新与优势
CalicoST算法的核心优势在于其能够从SRT数据中精确推断等位基因特异性拷贝数变异(allele-specific CNAs)。这种算法不仅能够揭示标准拷贝数分析方法无法识别的变异,还能根据这些变异构建肿瘤克隆的进化树和空间分布图。具体来说,CalicoST通过以下几个步骤实现了其强大的功能:
推断等位基因特异性拷贝数变异:例如,拷贝数中性杂合性丧失(Copy-Neutral Loss of Heterozygosity, CNLOH)和镜像亚克隆拷贝数变异(mirrored subclonal CNAs)等事件,通常在传统的拷贝数分析中难以被发现。CalicoST通过分析不同克隆的基因表达信息,能揭示这些隐性变异。
构建肿瘤克隆的进化树与空间进化图:CalicoST通过推断肿瘤中各个克隆的拷贝数变化,建立了肿瘤克隆之间的进化关系,并结合肿瘤样本的空间分布信息,构建肿瘤的空间进化地理图。
多切片联合分析:CalicoST支持对多个切片数据的联合分析,通过整合来自同一肿瘤的不同切片信息,进一步提高了肿瘤演化分析的准确性和空间一致性。
的空间演化研究
在一项针对前列腺癌的研究中,CalicoST被应用于分析来自五个切片的数据。这些切片的数据来自10x Genomics Visium平台,涵盖了多个不同空间位置的转录组信息。通过对这些数据的综合分析,CalicoST成功识别出五个不同的肿瘤克隆,并推断出这些克隆的等位基因特异性拷贝数变异。具体的研究数据如下:
克隆识别与空间分布:研究显示,克隆5在前列腺的三个切片(H1_4、H1_5和H2_5)中均出现,并在空间上形成了一个连贯的区域。即使切片的相对位置没有被明确提供,CalicoST依然能够准确地将这些空间位置归为同一克隆区域。这一现象表明,CalicoST能够通过基因表达数据中的等位基因频率信号(BAF)在多个切片之间建立空间一致性,从而更好地揭示肿瘤克隆的空间分布。
镜像亚克隆拷贝数变异:在染色体2、6、8上,研究发现了多个镜像亚克隆拷贝数变异。例如,染色体8p上出现了镜像删除,而染色体8q则发生了镜像扩增,其中包含了MYC基因,该基因在前列腺癌中与肿瘤的侵袭性生长密切相关。类似地,染色体6上的删除涉及了多个肿瘤抑制基因(如ZNF292、HMGN3和UBE2J1),这些基因的缺失在前列腺癌中也较为常见。
肿瘤克隆的进化树和空间演化:通过推断肿瘤克隆的基因组变化,CalicoST成功构建了肿瘤克隆的进化树,并揭示了左、右两侧的肿瘤克隆在遗传上的分化。在前列腺的左半部分,克隆1和克隆2有着较多的基因组变异,而克隆3则显示出较少的基因组改变,更接近正常二倍体基因组。这表明,肿瘤在空间上的分布与其进化历史密切相关。
CalicoST的广泛应用与前景
除了前列腺癌,CalicoST算法还成功应用于其他类型的肿瘤样本分析。例如,在瘤的研究中,CalicoST识别出了多个肿瘤克隆,并揭示了原研究中未报告的克隆。此外,CalicoST在模拟数据中的表现也非常出色。研究人员通过模拟不同复杂度的肿瘤样本,发现CalicoST在识别肿瘤克隆和拷贝数变异方面的准确度远高于其他现有算法,如Numbat和STARCH。
尽管CalicoST在推断肿瘤克隆的进化地理图和拷贝数变异方面表现出色,但它也面临一些挑战。例如,算法对SRT数据中异质性单核苷酸多态性(SNP)的覆盖度要求较高,而某些SRT技术的覆盖度较低,可能影响其准确性。此外,算法在高拷贝数扩增事件的识别上仍存在一定的局限,特别是当这些变异的信号较弱时。
未来,随着空间转录组学技术的不断进步,CalicoST可能会结合其他技术,如空间ATAC-seq、全外显子组测序(WES)等,进一步提升肿瘤演化研究的精度和应用范围。
版权声明 本网站所有注明“来源:100医药网”或“来源:bioon”的文字、图片和音视频资料,版权均属于100医药网网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:100医药网”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。 87%用户都在用100医药网APP 随时阅读、评论、分享交流 请扫描二维码下载-> 医药网新闻- 相关报道
-
- 谷氨酸棒杆菌全基因组规模筛选新型功能元件方面获进展 (2024-11-22)
- 蛋糕+小甜水可以使心情变好?错!最新18万人研究:“甜食爱好者”更易得抑郁、糖尿病及中风,且每天仅多摄入1g糖,也会加速身体衰老 (2024-11-22)
- 官宣定档!2025(第五届)类器官大会,3月8日与您相约上海! (2024-11-21)
- Int J Cancer:高水平的Ω (2024-11-21)
- Mol Cancer:新研究发现治疗三阴性乳腺癌的新靶点——NAC1蛋白 (2024-11-20)
- Genome Med:大规模遗传学研究有望识别出通过调节血液代谢产物从而降低机体心血管疾病风险的特殊靶点 (2024-11-20)
- Oncogene:丙酸盐代谢产物或与肺癌患者机体免疫细胞功能减退密切相关 (2024-11-19)
- Cancer Cell:邹伟平团队揭示衣康酸转运蛋白SLC13A3赋予肿瘤铁死亡抗性,削弱肿瘤免疫治疗效果 (2024-11-19)
- 《自然·通讯》:东南大学团队发现,PD (2024-11-19)
- Nature Biotechnology:淀粉样蛋白沉积为何如此难治,研究人员找到了哪些突破? (2024-11-19)
- 视频新闻
-
- 图片新闻
-
医药网免责声明:
- 本公司对医药网上刊登之所有信息不声明或保证其内容之正确性或可靠性;您于此接受并承认信赖任何信息所生之风险应自行承担。本公司,有权但无此义务,改善或更正所刊登信息任何部分之错误或疏失。
- 凡本网注明"来源:XXX(非医药网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。本网转载其他媒体之稿件,意在为公众提供免费服务。如稿件版权单位或个人不想在本网发布,可与本网联系,本网视情况可立即将其撤除。联系QQ:896150040